Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Sci Total Environ ; 896: 165236, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37392887

ABSTRACT

Secondhand exposure to cannabis smoke occurs in public outdoor locations due to outdoor smoking or leakage of indoor smoking. Very little is known regarding the actual levels of exposure. This study examined PM2.5 exposure to marijuana smoke, focusing on one type of public outdoor location - golf courses where illegal marijuana consumption is increasingly common. Based on 24 visits to 10 courses over a 6-month period, >20 % visits encountered marijuana smoke, with peak PM2.5 exposures up to 149 µg/m3. The levels of exposure depended upon the source type (smoking versus vaping) and the proximity to the smoker/vaper. Ten additional investigations were performed to measure marijuana secondhand exposure in other public outdoor locations (near a smoker in a public park, near a parked car with in-car smoking/vaping, and near a residential garage with indoor smoking/vaping). 23 encounters of marijuana exposure events were documented in total. Average outdoor exposures to PM2.5 close to public outdoor smoking and vaping (on golf courses and a public park) were >3 times as high as those near a car or a building with indoor marijuana emissions. The average outdoor exposure caused by the leakage of in-car secondhand smoke was higher than that caused by in-building emissions.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Cannabis , Golf , Tobacco Smoke Pollution , Air Pollution, Indoor/analysis , Tobacco Smoke Pollution/analysis , Pilot Projects , Particulate Matter/analysis , Air Pollutants/analysis
2.
Sci Total Environ ; 852: 158244, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36037897

ABSTRACT

The widespread legalization of recreational marijuana raises growing concerns about exposure to secondhand marijuana smoke. An important location for marijuana smoking is the home, but few measurements of air pollutant concentrations in the home are available for a marijuana joint fully smoked in one of its rooms. We used research grade calibrated real-time continuous PM2.5 air monitors in controlled 5-hour experiments to measure fine particle concentrations in the 9 rooms of a detached, two-story, 4-bedroom home with either a tobacco cigarette or a marijuana joint fully smoked in the home's living room. The master bedroom's door was closed, and the other bedroom doors were open, as was the custom of occupants of this residence. In two experiments with a Marlboro tobacco cigarette smoked by a machine in the living room, the 5-hour mean PM2.5 concentrations in 9 rooms of the home were 15.2 µg/m3 (SD 5.6 µg/m3) and 15.0 µg/m3 (SD 3.7 µg/m3). In contrast, three experiments with pre-rolled marijuana joints smoked in the same manner in the living room produced 5-hour mean PM2.5 concentrations of 38.9 µg/m3 (SD 10.6 µg/m3), 79.8 µg/m3 (SD 25.7 µg/m3) and 80.7 µg/m3 (SD 28.8 µg/m3). In summary, the average secondhand PM2.5 concentrations from smoking a marijuana joint in the home were found to be 4.4 times as great as the secondhand PM2.5 concentrations from smoking a tobacco cigarette. Opening 3 windows by 12.7 cm reduced the high PM2.5 concentrations from marijuana smoking by 67 %, but the PM2.5 levels still exceeded those produced by tobacco smoking with the windows closed.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Cannabis , Tobacco Products , Tobacco Smoke Pollution , Nicotiana , Tobacco Smoke Pollution/analysis , Air Pollution, Indoor/analysis , Air Pollutants/analysis , Particulate Matter/analysis
3.
J Asthma ; 54(4): 341-346, 2017 May.
Article in English | MEDLINE | ID: mdl-27723364

ABSTRACT

OBJECTIVE: Epidemiologic studies indicate that indoor air pollution is correlated with morbidity caused by allergic diseases. We evaluated the effectiveness of reducing the levels of indoor fine particulate matter <2.5 micrometer diameter (PM2.5) in Fresno, California using air purifiers on health outcomes in children with asthma and/or allergic rhinitis. METHODS: The active group (with air purifiers) and the control group consisted of eight houses each. Air purifiers were installed in the living rooms and bedrooms of the subjects in the active group during the entire 12-week study duration. Childhood asthma control test, peak flow rate monitoring, and nasal symptom scores were evaluated at weeks 0, 6, and 12. RESULTS: At 12 weeks, the active group showed a trend toward an improvement of childhood asthma control test scores and mean evening peak flow rates, whereas the control group showed deterioration in the same measures. Total and daytime nasal symptoms scores significantly reduced in the active group (p = 0.001 and p = 0.011, respectively). The average indoor PM2.5 concentrations reduced by 43% (7.42 to 4.28 µg/m3) in the active group (p = 0.001). CONCLUSIONS: Intervention with air purifiers reduces indoor PM2.5 levels with significant improvements in nasal symptoms in children with allergic rhinitis in Fresno.


Subject(s)
Air Filters , Air Pollution, Indoor/prevention & control , Asthma/therapy , Particulate Matter/analysis , Rhinitis, Allergic/therapy , Adolescent , Air Pollution, Indoor/analysis , California , Child , Female , Humans , Male , Pilot Projects
4.
Article in English | MEDLINE | ID: mdl-26805860

ABSTRACT

Most casinos owned by sovereign American Indian nations allow smoking, even in U.S. states such as California where state laws restrict workplace smoking. Collaborations between casinos and public health workers are needed to promote smoke-free policies that protect workers and patrons from secondhand tobacco smoke (SHS) exposure and risks. Over seven years, a coalition of public health professionals provided technical assistance to the Redding Rancheria tribe in Redding, California in establishing a smoke-free policy at the Win-River Resort and Casino. The coalition provided information to the casino general manager that included site-specific measurement of employee and visitor PM2.5 personal exposure, area concentrations of airborne nicotine and PM2.5, visitor urinary cotinine, and patron and staff opinions (surveys, focus groups, and a Town Hall meeting). The manager communicated results to tribal membership, including evidence of high SHS exposures and support for a smoke-free policy. Subsequently, in concert with hotel expansion, the Redding Rancheria Tribal Council voted to accept a 100% restriction of smoking inside the casino, whereupon PM2.5 exposure in main smoking areas dropped by 98%. A 70% partial-smoke-free policy was instituted ~1 year later in the face of revenue loss. The success of the collaboration in promoting a smoke-free policy, and the key element of air quality feedback, which appeared to be a central driver, may provide a model for similar efforts.


Subject(s)
Air Pollution, Indoor/analysis , Health Resorts/legislation & jurisprudence , Nicotine/analysis , Public Health/legislation & jurisprudence , Smoke-Free Policy/legislation & jurisprudence , Tobacco Smoke Pollution/legislation & jurisprudence , California , Cooperative Behavior , Environmental Monitoring , Humans , Indians, North American
5.
Environ Sci Process Impacts ; 17(11): 1959-66, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26487426

ABSTRACT

Real-time particle monitors are essential for accurately estimating exposure to fine particles indoors. However, many such monitors tend to be prohibitively expensive for some applications, such as a tenant or homeowner curious about the quality of the air in their home. A lower cost version (the Dylos Air Quality Monitor) has recently been introduced, but it requires appropriate calibration to reflect the mass concentration units required for exposure assessment. We conducted a total of 64 experiments with a suite of instruments including a Dylos DC1100, another real-time laser photometer (TSI SidePak™ Model AM-510 Personal Aerosol Monitor), and a gravimetric sampling apparatus to estimate Dylos calibration factors for emissions from 17 different common indoor sources including cigarettes, incense, fried bacon, chicken, and hamburger. Comparison of minute-by-minute data from the Dylos with the gravimetrically calibrated SidePak yielded relationships that enable the conversion of the raw Dylos particle counts less than 2.5 µm (in #/0.01 ft(3)) to estimated PM2.5 mass concentration (e.g. µg m(-3)). The relationship between the exponentially-decaying Dylos particle counts and PM2.5 mass concentration can be described by a theoretically-derived power law with source-specific empirical parameters. A linear relationship (calibration factor) is applicable to fresh or quickly decaying emissions (i.e., before the aerosol has aged and differential decay rates introduce curvature into the relationship). The empirical parameters for the power-law relationships vary greatly both between and within source types, although linear factors appear to have lower uncertainty. The Dylos Air Quality Monitor is likely most useful for providing instantaneous feedback and context on mass particle levels in home and work situations for field-survey or personal awareness applications.


Subject(s)
Air Pollution, Indoor/analysis , Environmental Monitoring/instrumentation , Particulate Matter/analysis , Aerosols/analysis , Air Pollution, Indoor/statistics & numerical data , Calibration , Environmental Monitoring/standards , Particle Size , Particulate Matter/standards
6.
J Air Waste Manag Assoc ; 64(1): 47-60, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24620402

ABSTRACT

UNLABELLED: As indoor smoking bans have become widely adopted, some U.S. communities are considering restricting smoking outdoors, creating a need for measurements of air pollution near smokers outdoors. Personal exposure experiments were conducted with four to five participants at six sidewalk bus stops located 1.5-3.3 m from the curb of two heavily traveled California arterial highways with 3300-5100 vehicles per hour. At each bus stop, a smoker in the group smoked a cigarette. Gravimetrically calibrated continuous monitors were used to measure fine particle concentrations (aerodynamic diameter < or = 2.5 microm; PM2.5) in the breathing zones (within 0.2 m from the nose and mouth) of each participant. At each bus stop, ultrafine particles (UFP), wind speed, temperature, relative humidity, and traffic counts were also measured. For 13 cigarette experiments, the mean PM2.5 personal exposure of the nonsmoker seated 0.5 m from the smoker during a 5-min cigarette ranged from 15 to 153 microg/m3. Of four persons seated on the bench, the smoker received the highest PM2.5 breathing-zone exposure of 192 microg/m3. There was a strong proximity effect: nonsmokers at distances 0.5, 1.0, and 1.5 m from the smoker received mean PM2.5 personal exposures of 59, 40, and 28 microg/m3, respectively, compared with a background level of 1.7 microg/m3. Like the PM2.5 concentrations, UFP concentrations measured 0.5 m from the smoker increased abruptly when a cigarette started and decreased when the cigarette ended, averaging 44,500 particles/cm3 compared with the background level of 7200 particles/cm3. During nonsmoking periods, the UFP background concentrations showed occasional peaks due to traffic, whereas PM2.5 background concentrations were extremely low. The results indicate that a single cigarette smoked outdoors at a bus stop can cause PM2.5 and UFP concentrations near the smoker that are 16-35 and 6.2 times, respectively, higher than the background concentrations due to cars and trucks on an adjacent arterial highway. IMPLICATIONS: Rules banning smoking indoors have been widely adopted in the United States and in many countries. Some communities are considering smoking bans that would apply to outdoor locations. Although many measurements are available of pollutant concentrations from secondhand smoke at indoor locations, few measurements are available of exposure to secondhand smoke outdoors. This study provides new data on exposure to fine and ultrafine particles from secondhand smoke near a smoker outdoors. The levels are compared with the exposure measured next to a highway. The findings are important for policies that might be developed for reducing exposure to secondhand smoke outdoors.


Subject(s)
Air Pollutants/chemistry , Particle Size , Particulate Matter/chemistry , Smoking , Transportation , California , Environmental Monitoring , Pilot Projects
7.
J Expo Sci Environ Epidemiol ; 24(3): 311-8, 2014.
Article in English | MEDLINE | ID: mdl-24064529

ABSTRACT

For an actively emitting source such as cooking or smoking, indoor measurements have shown a strong "proximity effect" within 1 m. The significant increase in both the magnitude and variation of concentration near a source is attributable to transient high peaks that occur sporadically-and these "microplumes" cause great uncertainty in estimating personal exposure. Recent field studies in naturally ventilated rooms show that close-proximity concentrations are approximately lognormally distributed. We use the autocorrelated random walk method to represent the time-varying directionality of indoor emissions, thereby predicting the time series and frequency distributions of concentrations close to an actively emitting point source. The predicted 5-min concentrations show good agreement with measurements from a point source of CO in a naturally ventilated house-the measured and predicted frequency distributions at 0.5- and 1-m distances are similar and approximately lognormal over a concentration range spanning three orders of magnitude. By including the transient peak concentrations, this random airflow modeling method offers a way to more accurately assess acute exposure levels for cases where well-defined airflow patterns in an indoor space are not available.


Subject(s)
Air Pollution , Environmental Exposure , Stochastic Processes , Ventilation , Probability
8.
Environ Sci Process Impacts ; 15(8): 1511-9, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23784066

ABSTRACT

Indoor sources can greatly contribute to personal exposure to particulate matter less than 2.5 µm in diameter (PM2.5). To accurately assess PM2.5 mass emission factors and concentrations, real-time particle monitors must be calibrated for individual sources. Sixty-six experiments were conducted with a common, real-time laser photometer (TSI SidePak™ Model AM510 Personal Aerosol Monitor) and a filter-based PM2.5 gravimetric sampler to quantify the monitor calibration factors (CFs), and to estimate emission factors for common indoor sources including cigarettes, incense, cooking, candles, and fireplaces. Calibration factors for these indoor sources were all significantly less than the factory-set CF of 1.0, ranging from 0.32 (cigarette smoke) to 0.70 (hamburger). Stick incense had a CF of 0.35, while fireplace emissions ranged from 0.44-0.47. Cooking source CFs ranged from 0.41 (fried bacon) to 0.65-0.70 (fried pork chops, salmon, and hamburger). The CFs of combined sources (e.g., cooking and cigarette emissions mixed) were linear combinations of the CFs of the component sources. The highest PM2.5 emission factors per time period were from burned foods and fireplaces (15-16 mg min(-1)), and the lowest from cooking foods such as pizza and ground beef (0.1-0.2 mg min(-1)).


Subject(s)
Air Pollutants/analysis , Air Pollution, Indoor/analysis , Environmental Monitoring/standards , Particulate Matter/analysis , Air Pollutants/standards , Calibration/standards , Cooking , Fires , Particle Size , Particulate Matter/standards
9.
J Environ Monit ; 14(1): 94-104, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22068152

ABSTRACT

Personal exposure to air pollutants can be substantially higher in close proximity to an active source due to non-instantaneous mixing of emissions. The research presented in this paper quantifies this proximity effect for a non-buoyant source in 2 naturally ventilated homes in Northern California (CA), assessing its spatial and temporal variation and the influence of factors such as ventilation rate on its magnitude. To quantify how proximity to residential sources of indoor air pollutants affects human exposure, we performed 16 separate monitoring experiments in the living rooms of two detached single-family homes. CO (as a tracer gas) was released from a point source in the center of the room at a controlled emission rate for 5-12 h per experiment, while an array of 30-37 real-time monitors simultaneously measured CO concentrations with 15 s time resolution at radial distances ranging from 0.25-5 m under a range of ventilation conditions. Concentrations measured in close proximity (within 1 m) to the source were highly variable, with 5 min averages that typically varied by >100-fold. This variability was due to short-duration (<1 min) pollutant concentration peaks ("microplumes") that were frequently recorded in close proximity to the source. We decomposed the random microplume component from the total concentrations by subtracting predicted concentrations that assumed uniform, instantaneous mixing within the room and found that these microplumes can be modeled using a 3-parameter lognormal distribution. Average concentrations measured within 0.25 m of the source were 6-20 times as high as the predicted well-mixed concentrations.


Subject(s)
Air Pollutants/analysis , Air Pollution, Indoor/analysis , Environmental Monitoring , Air Pollution, Indoor/statistics & numerical data , Carbon Monoxide/analysis , Housing/statistics & numerical data , Humans , Models, Chemical
10.
J Environ Monit ; 13(6): 1695-702, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21589975

ABSTRACT

The amount of light scattered by airborne particles inside an aerosol photometer will vary not only with the mass concentration, but also with particle properties such as size, shape, and composition. This study conducted controlled experiments to compare the measurements of a real-time photometer, the SidePak AM510 monitor (SidePak), with gravimetric mass. PM sources tested were outdoor aerosols, and four indoor combustion sources: cigarettes, incense, wood chips, and toasting bread. The calibration factor for rescaling the SidePak measurements to agree with gravimetric mass was similar for the cigarette and incense sources, but different for burning wood chips and toasting bread. The calibration factors for ambient urban aerosols differed substantially from day to day, due to variations in the sources and composition of outdoor PM. A field evaluation inside a casino with active smokers yielded calibration factors consistent with those obtained in the controlled experiments with cigarette smoke.


Subject(s)
Aerosols/analysis , Air Pollutants/analysis , Air Pollution, Indoor/analysis , Environmental Monitoring/instrumentation , Tobacco Smoke Pollution/analysis , Particulate Matter/analysis
11.
Environ Sci Technol ; 45(9): 4016-22, 2011 May 01.
Article in English | MEDLINE | ID: mdl-21456572

ABSTRACT

For modeling exposure close to an indoor air pollution source, an isotropic turbulent diffusion coefficient is used to represent the average spread of emissions. However, its magnitude indoors has been difficult to assess experimentally due to limitations in the number of monitors available. We used 30-37 real-time monitors to simultaneously measure CO at different angles and distances from a continuous indoor point source. For 11 experiments involving two houses, with natural ventilation conditions ranging from <0.2 to >5 air changes per h, an eddy diffusion model was used to estimate the turbulent diffusion coefficients, which ranged from 0.001 to 0.013 m² s⁻¹. The model reproduced observed concentrations with reasonable accuracy over radial distances of 0.25-5.0 m. The air change rate, as measured using a SF6 tracer gas release, showed a significant positive linear correlation with the air mixing rate, defined as the turbulent diffusion coefficient divided by a squared length scale representing the room size. The ability to estimate the indoor turbulent diffusion coefficient using two readily measurable parameters (air change rate and room dimensions) is useful for accurately modeling exposures in close proximity to an indoor pollution source.


Subject(s)
Air Pollution, Indoor/analysis , Carbon Monoxide/analysis , Environmental Exposure/analysis , Air Movements , Diffusion , Environmental Monitoring/methods , Housing , Models, Chemical , Ventilation
12.
Environ Res ; 111(4): 473-84, 2011 May.
Article in English | MEDLINE | ID: mdl-21440253

ABSTRACT

Smoking bans often exempt casinos, exposing occupants to fine particles (PM(2.5)) from secondhand smoke. We quantified the relative contributions to PM(2.5) from both secondhand smoke and infiltrating outdoor sources in US casinos. We measured real-time PM(2.5), particulate polycyclic aromatic hydrocarbons (PPAH), and carbon dioxide (CO(2)) (as an index of ventilation rate) inside and outside 8 casinos in Reno, Nevada. We combined these data with data from previous studies, yielding a total of 66 US casinos with smoking in California, Delaware, Nevada, New Jersey, and Pennsylvania, developing PM(2.5) frequency distributions, with 3 nonsmoking casinos for comparison. Geometric means for PM(2.5) were 53.8 µg/m(3) (range 18.5-205 µg/m(3)) inside smoking casinos, 4.3 µg/m(3) (range 0.26-29.7 µg/m(3)) outside those casinos, and 3.1 µg/m(3) (range 0.6-9 µg/m(3)) inside 3 nonsmoking casinos. In a subset of 21 Reno and Las Vegas smoking casinos, PM(2.5) in gaming areas averaged 45.2 µg/m(3) (95% CI, 37.7-52.7 µg/m(3)); adjacent nonsmoking casino restaurants averaged 27.2 µg/m(3) (95% CI, 17.5-36.9 µg/m(3)), while PM(2.5) outside the casinos averaged 3.9 µg/m(3) (95% CI, 2.5-5.3 µg/m(3)). For a subset of 10 Nevada and Pennsylvania smoking casinos, incremental (indoor-outdoor) PM(2.5) was correlated with incremental PPAH (R(2)=0.79), with ventilation rate-adjusted smoker density (R(2)=0.73), and with smoker density (R(2)=0.60), but not with ventilation rates (R(2)=0.15). PPAH levels in 8 smoking casinos in 3 states averaged 4 times outdoors. The nonsmoking casinos' PM(2.5) (n=3) did not differ from outdoor levels, nor did their PPAH (n=2). Incremental PM(2.5) from secondhand smoke in approximately half the smoking casinos exceeded a level known to produce cardiovascular morbidity in nonsmokers after less than 2h of exposure, posing acute health risks to patrons and workers. Casino ventilation and air cleaning practices failed to control secondhand smoke PM(2.5). Drifting PM(2.5) from secondhand smoke contaminated unseparated nonsmoking areas. Smoke-free casinos reduced PM(2.5) to the same low levels found outdoors.


Subject(s)
Air Pollutants/analysis , Air Pollution, Indoor/statistics & numerical data , Inhalation Exposure/statistics & numerical data , Particulate Matter/analysis , Tobacco Smoke Pollution/statistics & numerical data , Air Pollution, Indoor/analysis , Environmental Monitoring , Humans , Risk Assessment , United States , Ventilation/statistics & numerical data
13.
J Expo Sci Environ Epidemiol ; 21(1): 31-41, 2011.
Article in English | MEDLINE | ID: mdl-20160761

ABSTRACT

Despite California's 1994 statewide smoking ban, exposure to secondhand smoke (SHS) continues in California's Indian casinos. Few data are available on exposure to airborne fine particles (PM2.5) in casinos, especially on a statewide basis. We sought to measure PM2.5 concentrations in Indian casinos widely distributed across California, exploring differences due to casino size, separation of smoking and non-smoking areas, and area smoker density. A selection of 36 out of the 58 Indian casinos throughout California were each visited for 1-3 h on weekend or holiday evenings, using two or more concealed monitors to measure PM2.5 concentrations every 10 s. For each casino, the physical dimensions and the number of patrons and smokers were estimated. As a preliminary assessment of representativeness, we also measured eight casinos in Reno, NV. The average PM2.5 concentration for the smoking slot machine areas (63 µg/m³) was nine times as high as outdoors (7 µg/m³), whereas casino non-smoking restaurants (29 µg/m³) were four times as high. Levels in non-smoking slot machine areas varied: complete physical separation reduced concentrations almost to outdoor levels, but two other separation types had mean levels that were 13 and 29 µg/m³, respectively, higher than outdoors. Elevated PM2.5 concentrations in casinos can be attributed primarily to SHS. Average PM2.5 concentrations during 0.5-1 h visits to smoking areas exceeded 35 µg/m³ for 90% of the casino visits.


Subject(s)
Air Pollutants/analysis , Air Pollution, Indoor/analysis , Indians, North American/psychology , Particulate Matter/analysis , Smoking/ethnology , Tobacco Smoke Pollution/analysis , Air Pollutants/chemistry , California , Data Collection , Environmental Monitoring , Gambling , Humans , Particle Size , Particulate Matter/chemistry , Smoking/legislation & jurisprudence
14.
J Environ Monit ; 12(4): 846-53, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20383365

ABSTRACT

Electrochemical sensors are commonly used to measure concentrations of gaseous air pollutants in real time, especially for personal exposure investigations. The monitors are small, portable, and have suitable response times for estimating time-averaged concentrations. However, for transient exposures to air pollutants lasting only seconds to minutes, a non-instantaneous time response can cause measured values to diverge from actual input concentrations, especially when the pollutant fluctuations are pronounced and rapid. Using 38 Langan carbon monoxide (CO) monitors, which can be set to log data every 2 s, we found electrochemical sensor response times of 30-50 s. We derived a simple model based on Fick's Law to reconstruct a close to accurate time series from logged data. Starting with experimentally measured data for repetitive step input signals of alternating high and low CO concentrations, we were able to reconstruct a much improved 2-s concentration time series using the model. We also utilized the model to examine errors in monitor measurements for different averaging times. By selecting the averaging time based on the response time of the monitor, the error between actual and measured pollutant levels can be minimized. The methodology presented in this study is useful when aiming to accurately determine a time series of rapidly time-varying concentrations, such as for locations close to an active point source or near moving traffic.


Subject(s)
Air Pollutants/analysis , Electrochemical Techniques , Environmental Monitoring/instrumentation , Models, Chemical
15.
Environ Sci Technol ; 43(13): 4641-6, 2009 Jul 01.
Article in English | MEDLINE | ID: mdl-19673245

ABSTRACT

Indoor and outdoor airborne particle mass, protein, endotoxin and (1 --> 3)-beta-D-glucan in three size fractions (PM2.5, PM10, and TSP) were measured in ten single-family homes, along with quantifying household activities in the sampling room. Correlations between human activity levels and elevations in the indoor concentrations of particles and biomarkers were evaluated using four approaches for distinguishing activity levels: diurnal differences, the number of occupants, self-estimated occupancy, and activity strength. The concentrations of particles, protein, endotoxin and (1 --> 3)-beta-D-glucan in all three size fractions (PM < 2.5 microm, PM10-2.5, and PM >10 microm) were found, in most cases, to be significantly elevated during the day, and with higher activity levels in the room. The coarser fractions of particle mass and bioaerosols were more strongly correlated with human activity levels. Activity strength was the most statistically robust measure for relating human activities to indoor bioaerosol levels. While self-estimated activity and analysis of diurnal differences both offer reasonable (but not perfect) alternatives to activity strength, the number of occupants appears to be a weaker indicator for homes.


Subject(s)
Aerosols , Air Pollutants/analysis , Air Pollution, Indoor/analysis , Environmental Monitoring/methods , Air Movements , Air Pollution/analysis , Cohort Studies , Endotoxins/analysis , Glucans/analysis , Humans , Particle Size , Particulate Matter , Proteins/analysis , Residence Characteristics , Volatilization
16.
J Air Waste Manag Assoc ; 59(6): 704-14, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19603738

ABSTRACT

The particle and gaseous pollutants in vehicle exhaust emissions undergo rapid dilution with ambient air after exiting the tailpipe. The rate and extent of this dilution can greatly affect both the size evolution of primary exhaust particles and the potential for formation of ultrafine particles. Dilution ratios were measured inside of a wind tunnel in the region immediately downstream of the tailpipe using model vehicles (approximately one-fifth to one-seventh scale models) representing a light-duty truck, a passenger car, and a heavy-duty tractor head (without the trailer). A tracer gas (ethene) was released at a measured flow rate from the tailpipe, and 60 sampling probes placed downstream of the vehicle simultaneously sampled gas tracer concentrations in the near-wake (first few vehicle heights) and far-wake regions (beyond 10 vehicle heights). Tests using different tunnel wind speeds show the range of dilution ratios that can be expected as a function of vehicle type and downstream distance (i.e., time). The vehicle shape quite strongly influences dilution profiles in the near-wake region but is much less important in the far-wake region. The tractor generally produces higher dilution rates than the automobile and light-duty truck under comparable conditions.


Subject(s)
Air Movements , Air Pollutants/analysis , Motor Vehicles , Vehicle Emissions/analysis , Particle Size , Particulate Matter
17.
J Air Waste Manag Assoc ; 59(6): 715-24, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19603739

ABSTRACT

The rate at which motor vehicle exhaust undergoes dilution with ambient air will greatly affect the size distribution characteristics of the particulate emissions. Wind tunnel experiments were conducted to investigate the impacts of vehicle shape, tailpipe orientation, and exhaust exit velocity on the dilution profiles under steady driving conditions for three model vehicles: a light-duty truck, a passenger car, and a heavy-duty tractor head. A three dimensional array of 60 sensors provided simultaneous measurements of dilution ratios for the emissions in the near- and far-wake regions downstream of the vehicle. The processes underlying the observations were investigated via nondimensionalization. Many of the trends seen substantially downstream can be well generalized using a simple nondimensionalization technique; however, this is not true in the near-wake region (within a downstream distance equivalent to a few vehicle heights). In the near-wake region, using the vehicle width and length to normalize for the vehicle shape is not enough to fully account for the variations seen. Including the exhaust flow rate in the nondimensionalization process is effective further downwind but does not adequately capture the complexity in the near-wake region. Tailpipe orientation and location are also shown to be influential factors affecting the near-wake dilution characteristics.


Subject(s)
Air Movements , Air Pollutants/chemistry , Motor Vehicles , Vehicle Emissions/analysis , Air Pollution/prevention & control , Environmental Monitoring
18.
Exp Lung Res ; 34(10): 631-62, 2008 Dec.
Article in English | MEDLINE | ID: mdl-19085563

ABSTRACT

Chronic obstructive pulmonary diseases (COPD) may increase air pollution-related mortality. The relationship of immune mechanisms to mortality caused by fine particulates in healthy and COPD populations is incompletely understood. The objective of this study was to determine whether fine particulates from a single biomass fuel alter stress and inflammation biomarkers in people with COPD. Healthy and COPD subjects were exposed to smoke in a controlled indoor setting. Immune responses were quantified by measuring cell surface marker expression with flow-cytometric analysis and mRNA levels with quantitative reverse transcriptase-polymerase chain reactions in whole blood before and after exposure. Preexposure COPD subjects had more leukocytes, mainly CD14(+) monocytes and neutrophils, but fewer CD3(+) T cells. Fifty-seven of 186 genes were differentially expressed between healthy and COPD subjects' peripheral blood mononuclear cells (PBMCs). Of these, only nuclear factor (NF)-kappa B1, TIMP-1, TIMP-2, and Duffy genes were up-regulated in COPD subjects. At 4 hours post smoke exposure, monocyte levels decreased only in healthy subjects. Fifteen genes, particular to inflammation, immune response, and cell-to-cell signaling, were differentially expressed in COPD subjects, versus 4 genes in healthy subjects. The authors observed significant differences in subjects' PBMCs, which may elucidate the adverse effects of air pollution particulates on people with COPD.


Subject(s)
Biomass , Particulate Matter/adverse effects , Pulmonary Disease, Chronic Obstructive/immunology , Smoke/adverse effects , Adult , Aged , Aged, 80 and over , Biomarkers , Cardiovascular Diseases/etiology , Flow Cytometry , Gene Expression Profiling , HLA-DR Antigens/analysis , Humans , Immunophenotyping , Lipopolysaccharide Receptors/analysis , Middle Aged , Pulmonary Disease, Chronic Obstructive/complications , Pulmonary Disease, Chronic Obstructive/metabolism , Reverse Transcriptase Polymerase Chain Reaction
19.
Infect Control Hosp Epidemiol ; 29(5): 462-4, 2008 May.
Article in English | MEDLINE | ID: mdl-18419373

ABSTRACT

Air samples taken in a hospital undergoing construction and analyzed with a quantitative polymerase chain reaction (qPCR) assay for the Aspergillus genus did not show elevated concentrations of Aspergillus or particulate matter with a diameter of 5 microm or less in patient areas. Air samples from the construction zone indicated the containment system, which used polyethylene film barrier and negative pressure, was effective.


Subject(s)
Air Microbiology , Aspergillus/isolation & purification , Hospital Design and Construction , Particulate Matter/analysis , Air Pollution/analysis , Environment, Controlled , Infection Control/methods , Polyethylene
20.
J Environ Monit ; 9(6): 599-609, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17554432

ABSTRACT

Aspergillus is a genus of mold that has strong indoor sources, including several species capable of acting as opportunistic pathogens. Previous studies suggest that Aspergillus could serve as an indicator for abnormal mold growth or moisture, making it an important genus for environmental monitoring. Here, a quantitative polymerase chain reaction (qPCR, or real-time PCR) assay is presented for Aspergillus. The assay shows good specificity for the genus, detecting all Aspergillus species tested, although a few non-Aspergillus species are also amplified. Sensitivity testing demonstrates that DNA representing one conidium can be detected. A validation study compared qPCR results against direct microscopy counts using A. fumigatus conidia aerosolized into a laboratory chamber. The assay was then used to quantify Aspergillus in indoor air samples, demonstrating its utility for environmental monitoring. Analysis of a small number of clinical sputum samples showed complete agreement with culturing results.


Subject(s)
Aspergillus/classification , Aspergillus/isolation & purification , Environmental Monitoring/methods , Polymerase Chain Reaction/methods , Aspergillus/genetics , DNA, Fungal/genetics , Reproducibility of Results , Sensitivity and Specificity , Species Specificity , Spores, Fungal/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...